Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Min Duan, ${ }^{\text {a* }}$ Peng-Mian Huang, ${ }^{\text {b }}$ Zi-Li Liu, ${ }^{\text {c }}$ Jiang-Sheng Li $^{\text {b }}$ and Lei Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Pharmacy, Jiangxi Science \& Technology Normal University, Nanchang 330013, People's Republic of China, ${ }^{\text {b }}$ College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{c}}$ School of Biological \& Chemical Engineering, Guangzhou University,
Guangzhou 510006, People's Republic of China

Correspondence e-mail:
dxmlhp@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.078$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

3,6-Dibromo-9-(3-pyridylmethyl)-9H-carbazole

The title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2}$, was synthesized by N alkylation of 3-(chloromethyl)pyridine with 3,6-dibromo-9 H carbazole. The carbazole ring system is essentially planar, with a mean deviation of $0.0138 \AA$, and forms a dihedral angle of $96.7(8)^{\circ}$ with the plane of the pyridine ring. In the crystal structure, $\pi-\pi$ interactions and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are observed.

Comment

Carbazole derivatives substituted by N-alkylation possess valuable pharmaceutical properties (Buu-Hoï \& Royer, 1950; Harfenist \& Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). The title compound, 3,6-dibromo-9-(3-pyridylmethyl)9 H -carbazole, (I) (Fig. 1), was synthesized by N -alkylation of 3-(chloromethyl)pyridine with 3,6-dibromo-9H-carbazole.

(I)

The carbazole ring system is essentially planar, with a mean deviation of $0.0138 \AA$, consistent with previously reported values (Duan, Huang et al., 2005). The dihedral angle formed between the carbazole ring system and the plane of the pyridine ring is $96.7(8)^{\circ}$. $\mathrm{C}-\mathrm{Br}$ distances are in the range 1.905 (3) to 1.907 (3) \AA and are consistent with literature values (Allen et al., 1987). In the crystal structure, $\pi-\pi$ interactions are observed; the shortest, $3.519 \AA$, is between the $\mathrm{N} 1 /$ $\mathrm{C} 1-\mathrm{C} 12$ and $\mathrm{C} 7-\mathrm{C} 12$ rings of molecules related by $(1-x,-y$, $2-z$). In addition, there are $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions, as shown in Fig. 2 and detailed in Table 1.

Experimental

The title compound was prepared according to the procedure of Duan, Han et al. (2005). A solution of potassium hydroxide (7.0 g) in dimethylformamide (50 ml) was stirred at room temperature for 20 min . 3,6-Dibromocarbazole ($6.5 \mathrm{~g}, 20 \mathrm{mmol}$), prepared according to Smith et al. (1992), was added and the mixture stirred for a further 40 min . A solution of 3-(chloromethyl)pyridine ($3.825 \mathrm{~g}, 30 \mathrm{mmol}$) in

Received 2 November 2005 Accepted 5 December 2005 Online 10 December 2005
dimethylformamide $(50 \mathrm{ml})$ was added dropwise with stirring. The resulting mixture was then stirred at room temperature for 10 h and poured into water $(500 \mathrm{ml})$, yielding a white precipitate. The solid product (I) was collected by filtration, washed with cold water and recrystallized from EtOH (yield $7.11 \mathrm{~g}, 85.5 \%$; m.p. 488 K). Compound (I) (40 mg) was dissolved in a mixture of chloroform $(5 \mathrm{ml})$ and ethanol $(5 \mathrm{ml})$ and the solution was kept at room temperature for 18 d . Slow evaporation of the solution yielded colourless crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{~N}_{2}$
$M_{r}=416.12$
Monoclinic, $P 2_{1} / c$
$a=10.469$ (3) A
$b=16.405$ (5) \AA
$c=9.866$ (3) \AA
$\beta=112.761$ (4) ${ }^{\circ}$
$V=1562.6$ (8) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.258, T_{\text {max }}=0.484$
8670 measured reflections
$D_{x}=1.769 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2796
\quad reflections
$\theta=2.5-26.4^{\circ}$
$\mu=5.19 \mathrm{~mm}^{-1}$
$T=294(2) \mathrm{K}$
Block, colourless
$0.26 \times 0.22 \times 0.14 \mathrm{~mm}$

3194 independent reflections
2238 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-12 \rightarrow 13$
$k=-16 \rightarrow 20$
$l=-10 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.078$
$S=1.00$
3194 reflections
200 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0276 P)^{2}\right. \\
& +0.8633 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0233 \text { (8) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Br}^{\mathrm{i}}$	0.93	2.89	$3.595(3)$	134

Symmetry code: (i) $x+1, y, z+1$.

All H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and 0.97 (methylene) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the Foundation for Excellent Young Teachers of Jiangxi Science \& Technology Normal University.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level..

Figure 2
Packing diagram of (I), viewed along [001]. Dashed lines indicate C$\mathrm{H} \cdots \mathrm{Br}$ interactions.

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Hoï, N. P. \& Royer, R. (1950). J. Org. Chem. 15, 123-130.
Caulfield, T., Cherrier, M. P., Combeau, C. \& Mailliet, P. (2002). European Patent 1253141.
Duan, X. M., Han, J., Chen, L. G., Xu, Y. J. \& Li, Y. (2005). Fine Chemicals, 22, $39-40$, and 52.
Duan, X. M., Huang, P. M., Zheng, P. W., Li, J. S. (2005). Acta Cryst. E61, o3361-o3363.
Harfenist, M. \& Joyner, C. T. (1983). US Patent 4379160.
Harper, R. W., Lin, H. S. \& Richett M. E. (2002). World Patent 02079154.
Huang, P. M., Li, J. S., Duan, X. M., Zeng, T., Yan, X. L. (2005). Acta Cryst. E61, o2366-o2367.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, K., James, D. M., Mistry, A. G., Bye, M. R. \& Faulkner, D. J. (1992). Tetrahedron, 48, 7479-7488.

